#! /bin/sh /usr/share/dpatch/dpatch-run ## 99-md.txt.dpatch by martin f. krafft ## ## All lines beginning with `## DP:' are a description of the patch. ## DP: No description. @DPATCH@ diff -urNad mdadm-2.5.2~/md.txt mdadm-2.5.2/md.txt --- mdadm-2.5.2~/md.txt 1970-01-01 01:00:00.000000000 +0100 +++ mdadm-2.5.2/md.txt 2006-07-06 18:28:20.213989423 +0200 @@ -0,0 +1,357 @@ +Tools that manage md devices can be found at + http://www..kernel.org/pub/linux/utils/raid/.... + + +Boot time assembly of RAID arrays +--------------------------------- + +You can boot with your md device with the following kernel command +lines: + +for old raid arrays without persistent superblocks: + md=,,,,dev0,dev1,...,devn + +for raid arrays with persistent superblocks + md=,dev0,dev1,...,devn +or, to assemble a partitionable array: + md=d,dev0,dev1,...,devn + +md device no. = the number of the md device ... + 0 means md0, + 1 md1, + 2 md2, + 3 md3, + 4 md4 + +raid level = -1 linear mode + 0 striped mode + other modes are only supported with persistent super blocks + +chunk size factor = (raid-0 and raid-1 only) + Set the chunk size as 4k << n. + +fault level = totally ignored + +dev0-devn: e.g. /dev/hda1,/dev/hdc1,/dev/sda1,/dev/sdb1 + +A possible loadlin line (Harald Hoyer ) looks like this: + +e:\loadlin\loadlin e:\zimage root=/dev/md0 md=0,0,4,0,/dev/hdb2,/dev/hdc3 ro + + +Boot time autodetection of RAID arrays +-------------------------------------- + +When md is compiled into the kernel (not as module), partitions of +type 0xfd are scanned and automatically assembled into RAID arrays. +This autodetection may be suppressed with the kernel parameter +"raid=noautodetect". As of kernel 2.6.9, only drives with a type 0 +superblock can be autodetected and run at boot time. + +The kernel parameter "raid=partitionable" (or "raid=part") means +that all auto-detected arrays are assembled as partitionable. + +Boot time assembly of degraded/dirty arrays +------------------------------------------- + +If a raid5 or raid6 array is both dirty and degraded, it could have +undetectable data corruption. This is because the fact that it is +'dirty' means that the parity cannot be trusted, and the fact that it +is degraded means that some datablocks are missing and cannot reliably +be reconstructed (due to no parity). + +For this reason, md will normally refuse to start such an array. This +requires the sysadmin to take action to explicitly start the array +desipite possible corruption. This is normally done with + mdadm --assemble --force .... + +This option is not really available if the array has the root +filesystem on it. In order to support this booting from such an +array, md supports a module parameter "start_dirty_degraded" which, +when set to 1, bypassed the checks and will allows dirty degraded +arrays to be started. + +So, to boot with a root filesystem of a dirty degraded raid[56], use + + md-mod.start_dirty_degraded=1 + + +Superblock formats +------------------ + +The md driver can support a variety of different superblock formats. +Currently, it supports superblock formats "0.90.0" and the "md-1" format +introduced in the 2.5 development series. + +The kernel will autodetect which format superblock is being used. + +Superblock format '0' is treated differently to others for legacy +reasons - it is the original superblock format. + + +General Rules - apply for all superblock formats +------------------------------------------------ + +An array is 'created' by writing appropriate superblocks to all +devices. + +It is 'assembled' by associating each of these devices with an +particular md virtual device. Once it is completely assembled, it can +be accessed. + +An array should be created by a user-space tool. This will write +superblocks to all devices. It will usually mark the array as +'unclean', or with some devices missing so that the kernel md driver +can create appropriate redundancy (copying in raid1, parity +calculation in raid4/5). + +When an array is assembled, it is first initialized with the +SET_ARRAY_INFO ioctl. This contains, in particular, a major and minor +version number. The major version number selects which superblock +format is to be used. The minor number might be used to tune handling +of the format, such as suggesting where on each device to look for the +superblock. + +Then each device is added using the ADD_NEW_DISK ioctl. This +provides, in particular, a major and minor number identifying the +device to add. + +The array is started with the RUN_ARRAY ioctl. + +Once started, new devices can be added. They should have an +appropriate superblock written to them, and then passed be in with +ADD_NEW_DISK. + +Devices that have failed or are not yet active can be detached from an +array using HOT_REMOVE_DISK. + + +Specific Rules that apply to format-0 super block arrays, and + arrays with no superblock (non-persistent). +------------------------------------------------------------- + +An array can be 'created' by describing the array (level, chunksize +etc) in a SET_ARRAY_INFO ioctl. This must has major_version==0 and +raid_disks != 0. + +Then uninitialized devices can be added with ADD_NEW_DISK. The +structure passed to ADD_NEW_DISK must specify the state of the device +and it's role in the array. + +Once started with RUN_ARRAY, uninitialized spares can be added with +HOT_ADD_DISK. + + + +MD devices in sysfs +------------------- +md devices appear in sysfs (/sys) as regular block devices, +e.g. + /sys/block/md0 + +Each 'md' device will contain a subdirectory called 'md' which +contains further md-specific information about the device. + +All md devices contain: + level + a text file indicating the 'raid level'. This may be a standard + numerical level prefixed by "RAID-" - e.g. "RAID-5", or some + other name such as "linear" or "multipath". + If no raid level has been set yet (array is still being + assembled), this file will be empty. + + raid_disks + a text file with a simple number indicating the number of devices + in a fully functional array. If this is not yet known, the file + will be empty. If an array is being resized (not currently + possible) this will contain the larger of the old and new sizes. + Some raid level (RAID1) allow this value to be set while the + array is active. This will reconfigure the array. Otherwise + it can only be set while assembling an array. + + chunk_size + This is the size if bytes for 'chunks' and is only relevant to + raid levels that involve striping (1,4,5,6,10). The address space + of the array is conceptually divided into chunks and consecutive + chunks are striped onto neighbouring devices. + The size should be atleast PAGE_SIZE (4k) and should be a power + of 2. This can only be set while assembling an array + + component_size + For arrays with data redundancy (i.e. not raid0, linear, faulty, + multipath), all components must be the same size - or at least + there must a size that they all provide space for. This is a key + part or the geometry of the array. It is measured in sectors + and can be read from here. Writing to this value may resize + the array if the personality supports it (raid1, raid5, raid6), + and if the component drives are large enough. + + metadata_version + This indicates the format that is being used to record metadata + about the array. It can be 0.90 (traditional format), 1.0, 1.1, + 1.2 (newer format in varying locations) or "none" indicating that + the kernel isn't managing metadata at all. + + level + The raid 'level' for this array. The name will often (but not + always) be the same as the name of the module that implements the + level. To be auto-loaded the module must have an alias + md-$LEVEL e.g. md-raid5 + This can be written only while the array is being assembled, not + after it is started. + + new_dev + This file can be written but not read. The value written should + be a block device number as major:minor. e.g. 8:0 + This will cause that device to be attached to the array, if it is + available. It will then appear at md/dev-XXX (depending on the + name of the device) and further configuration is then possible. + + sync_speed_min + sync_speed_max + This are similar to /proc/sys/dev/raid/speed_limit_{min,max} + however they only apply to the particular array. + If no value has been written to these, of if the word 'system' + is written, then the system-wide value is used. If a value, + in kibibytes-per-second is written, then it is used. + When the files are read, they show the currently active value + followed by "(local)" or "(system)" depending on whether it is + a locally set or system-wide value. + + sync_completed + This shows the number of sectors that have been completed of + whatever the current sync_action is, followed by the number of + sectors in total that could need to be processed. The two + numbers are separated by a '/' thus effectively showing one + value, a fraction of the process that is complete. + + sync_speed + This shows the current actual speed, in K/sec, of the current + sync_action. It is averaged over the last 30 seconds. + + +As component devices are added to an md array, they appear in the 'md' +directory as new directories named + dev-XXX +where XXX is a name that the kernel knows for the device, e.g. hdb1. +Each directory contains: + + block + a symlink to the block device in /sys/block, e.g. + /sys/block/md0/md/dev-hdb1/block -> ../../../../block/hdb/hdb1 + + super + A file containing an image of the superblock read from, or + written to, that device. + + state + A file recording the current state of the device in the array + which can be a comma separated list of + faulty - device has been kicked from active use due to + a detected fault + in_sync - device is a fully in-sync member of the array + spare - device is working, but not a full member. + This includes spares that are in the process + of being recoverred to + This list make grow in future. + + errors + An approximate count of read errors that have been detected on + this device but have not caused the device to be evicted from + the array (either because they were corrected or because they + happened while the array was read-only). When using version-1 + metadata, this value persists across restarts of the array. + + This value can be written while assembling an array thus + providing an ongoing count for arrays with metadata managed by + userspace. + + slot + This gives the role that the device has in the array. It will + either be 'none' if the device is not active in the array + (i.e. is a spare or has failed) or an integer less than the + 'raid_disks' number for the array indicating which possition + it currently fills. This can only be set while assembling an + array. A device for which this is set is assumed to be working. + + offset + This gives the location in the device (in sectors from the + start) where data from the array will be stored. Any part of + the device before this offset us not touched, unless it is + used for storing metadata (Formats 1.1 and 1.2). + + size + The amount of the device, after the offset, that can be used + for storage of data. This will normally be the same as the + component_size. This can be written while assembling an + array. If a value less than the current component_size is + written, component_size will be reduced to this value. + + +An active md device will also contain and entry for each active device +in the array. These are named + + rdNN + +where 'NN' is the possition in the array, starting from 0. +So for a 3 drive array there will be rd0, rd1, rd2. +These are symbolic links to the appropriate 'dev-XXX' entry. +Thus, for example, + cat /sys/block/md*/md/rd*/state +will show 'in_sync' on every line. + + + +Active md devices for levels that support data redundancy (1,4,5,6) +also have + + sync_action + a text file that can be used to monitor and control the rebuild + process. It contains one word which can be one of: + resync - redundancy is being recalculated after unclean + shutdown or creation + recover - a hot spare is being built to replace a + failed/missing device + idle - nothing is happening + check - A full check of redundancy was requested and is + happening. This reads all block and checks + them. A repair may also happen for some raid + levels. + repair - A full check and repair is happening. This is + similar to 'resync', but was requested by the + user, and the write-intent bitmap is NOT used to + optimise the process. + + This file is writable, and each of the strings that could be + read are meaningful for writing. + + 'idle' will stop an active resync/recovery etc. There is no + guarantee that another resync/recovery may not be automatically + started again, though some event will be needed to trigger + this. + 'resync' or 'recovery' can be used to restart the + corresponding operation if it was stopped with 'idle'. + 'check' and 'repair' will start the appropriate process + providing the current state is 'idle'. + + mismatch_count + When performing 'check' and 'repair', and possibly when + performing 'resync', md will count the number of errors that are + found. The count in 'mismatch_cnt' is the number of sectors + that were re-written, or (for 'check') would have been + re-written. As most raid levels work in units of pages rather + than sectors, this my be larger than the number of actual errors + by a factor of the number of sectors in a page. + +Each active md device may also have attributes specific to the +personality module that manages it. +These are specific to the implementation of the module and could +change substantially if the implementation changes. + +These currently include + + stripe_cache_size (currently raid5 only) + number of entries in the stripe cache. This is writable, but + there are upper and lower limits (32768, 16). Default is 128. + strip_cache_active (currently raid5 only) + number of active entries in the stripe cache